Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

5-(2-Pyridyl)-1,3-dithiane-2-thione

Alan Hazell, ${ }^{\mathbf{a} *}$ Christine J. McKenzie ${ }^{\mathbf{b}}$ and Jimmi Nielsen ${ }^{\text {b }}$
${ }^{\text {a D Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 }}$
Århus C, Denmark, and ${ }^{\text {b }}$ Department of Chemistry, University of Southern Denmark,
Odense Campus, DK-5230 Odense M, Denmark
Correspondence e-mail: ach@chem.au.dk

Received 9 February 2001
Accepted 15 May 2001
The title compound, $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NS}_{3}$, crystallizes with two molecules in the asymmetric unit. In both molecules, the dithiane-2thione rings adopt a symmetric half-boat conformation with the C atom opposite the $\mathrm{C}-\mathrm{S}_{\text {thione }}$ bond out of the plane. The pyridine ring is in an equatorial position and is twisted out of the plane of the half-boat by 82.7 (2) and $84.5(2)^{\circ}$ in the two molecules, so that the N atom is trans to the axial $\mathrm{C}-\mathrm{H}$ bond in both cases.

Comment

We were unsuccessful in reproducing the synthesis of S, S^{\prime} -[2-(2-pyridyl)trimethylene]bis(O-ethyl dithiocarbonate), (I) (Uneme et al., 1992). Instead, the previously unknown ringclosed product 5-(2-pyridyl)-1,3-dithiane-2-thione, (II), was recovered. The only important difference in the procedures was that we heated the heterogeneous reaction mixture for a short time.

The crystal structure of (II) has two almost identical molecules in the asymmetric unit (Fig. 1). Both the dithiane-2thione rings adopt a symmetric half-boat conformation, with the C atom opposite the $\mathrm{C}-\mathrm{S}_{\text {thione }}$ bond out of the plane defined by the other atoms; the largest deviations from the plane are 0.05 (4) \AA for S 3 and 0.04 (2) \AA for $\mathrm{S} 2 A$. This symmetric half-boat conformation is one of the intermediates postulated for the preferential mode of inversion for the chair form of cyclohexanone (Bucourt \& Hainaut, 1967). This conformation is also found for 1,3-dithiane-2-thione in a series
of copper complexes (Bellito et al., 1994). The bond distances (Table 1) found here $\left[\mathrm{S}=\mathrm{C} 1.658\right.$ (1) and 1.662 (1) $\AA, \mathrm{Csp}^{2}-\mathrm{S}$ 1.714 (1)-1.719 (1) \AA and $\mathrm{S}-\mathrm{Csp}^{3} 1.810(1)-1.815$ (1) \AA A are very similar to those in the copper complexes, although there the ligand is mono-, di- or tridentate. For both molecules, the pyridine ring is in an equatorial position and is twisted by 82.7 (2) and $84.5(2)^{\circ}$ out of the plane of the half-boat. In both molecules, the N atom is trans to the axial $\mathrm{C}-\mathrm{H}$ bond so that the molecules have approximate mirror symmetry. The two

Figure 1
View of the two molecules of the title compound showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as small circles of arbitrary radii. The short $\mathrm{S} \cdots \mathrm{S}$ interaction is shown by a dashed line.
molecules are not exactly identical; superimposing the non-H atoms gives a mean-square deviation of $0.42 \AA^{2}$. The difference is mainly in the angle between the $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ and $\mathrm{S} 1 / \mathrm{S} 2 /$ $\mathrm{S} 3 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4$ planes, which is $124.8(2)^{\circ}$ for molecule 1 and 120.4 (2) ${ }^{\circ}$ for molecule 2 (the molecule with suffix A on the labels). This, together with a difference in the angle between $\mathrm{C} 5-\mathrm{C} 3$ and the $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ plane [55.5 (1) ${ }^{\circ}$ for molecule 1 and $54.0(1)^{\circ}$ for molecule 2] means that the angles between $\mathrm{C} 5-$ C 3 and the $\mathrm{S} 1 / \mathrm{S} 2 / \mathrm{S} 3 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4$ plane differ by $6.0(2)^{\circ}$, so that in molecule 2 , the pyridine ring is bent out of plane.

The shortest intermolecular S...S contact is 3.570 (1) \AA between S2 and $\mathrm{S} 3 A\left(x,-\frac{1}{2}-y, \frac{1}{2}+z\right)$. The x and y coordinates of the two independent molecules are related approximately by $\frac{3}{2}-x$ and $-y$, but there is no simple relation between the z coordinates.

Experimental

Triethylamine ($3.95 \mathrm{~g}, 39 \mathrm{mmol}$) was added dropwise to a solution of 2-(2-pyridyl)-1,3-propanediol ($2.40 \mathrm{~g}, 16 \mathrm{mmol}$) (Guanti et al., 1997) and p-toluenesulfonyl chloride $(6.55 \mathrm{~g}, 34 \mathrm{mmol})$ in acetonitrile $(32 \mathrm{ml})$ at 273 K over a period of ca 30 min . The mixture was kept at 279 K for 24 h and then poured into water (120 ml). An oil precipitated which crystallized after removal of the water and the addition of a little ethanol. The crude product was recrystallized from ethanol, giving 3.10 g (43%) of 2 -(pyridyl)trimethylene $\operatorname{bis}(p$-toluenesulfonate $) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.40(6 \mathrm{H}, s), 3.46(1 \mathrm{H}$, quintet $)$,
$4.32(4 \mathrm{H}, d), 7.0-7.4(6 \mathrm{H}, m), 7.5-7.8(5 \mathrm{H}, m), 8.3-8.4(1 \mathrm{H}, m)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22\left(\mathrm{CH}_{3}\right), 46(\mathrm{CH}), 68\left(\mathrm{CH}_{2}\right), 122.5($ py-C3 $), 124$ (py-C5), 128 (Ar-C3,C5), 130 (Ar-C2,C6), 132 (Ar-C4), 137 (py-C4), 134 (Ar-C1), 149.5 (py-C6), 155.5 (py-C2). A suspension of 2-(pyridyl)trimethylene bis(p-toluenesulfonate) ($3.1 \mathrm{~g}, 6.9 \mathrm{mmol}$) and potassium O-ethyldithiocarbonate ($3.18 \mathrm{~g}, 20 \mathrm{mmol}$) in acetonitrile (50 ml) was heated under reflux for 20 min and then poured into water $(250 \mathrm{ml})$. The reaction product was extracted with $\mathrm{CHCl}_{3}(3 \times$ $100 \mathrm{ml})$ and purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford a crude product (ca 300 mg) and a yellow oil. The crude product was crystallized from ethanol; yield: 200 mg (14%) of (II) as yellow crystals. The crystals used for the structure analysis were deposited from CDCl_{3} (m.p. $393-394 \mathrm{~K}$). Analysis calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NS}_{3}$: C 47.54, H 3.99, N 6.16 , S 42.31%; found: C 47.59 , H 4.10 , N 6.17 , S 32.30%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.2-3.8(5 \mathrm{H}, m), 7.2-7.4(3 \mathrm{H}, m)$, 7.6-7.8 $(1 \mathrm{H}, m), 8.5-8.6(1 \mathrm{H}, m) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 39.1\left(\mathrm{CH}_{2}\right)$, 39.2 (CH), 122.2 (py-C3), 122.7 (py-C5), 137 (py-C4), 150 (py-C6), 160 (py-C2), $220(\mathrm{C}-\mathrm{S})$; IR: $1010 \mathrm{~cm}^{-1}, \nu(\mathrm{C}=\mathrm{S})$; EIMS: $m / z 227$ $\left(M^{+}, 58\right), 194$ (23), 180 (17), 162 (11), 150 (10), 136 (26), 118 (32), 106 (100), 79 (25).

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NS}_{3}$

$M_{r}=227.38$
Monoclinic, $P 2_{1} / c$
$a=17.444$ (2) А
$b=9.6329$ (9) \AA
$c=12.680(1) \AA$
$\beta=110.245$ (2) ${ }^{\circ}$
$V=1999.1(3) \AA^{3}$
$Z=8$

Data collection

Siemens SMART CCD diffractometer
ω rotation scans with narrow frames
Absorption correction: by integration (XPREP; Siemens, 1995)
$T_{\text {min }}=0.687, T_{\text {max }}=0.894$
25069 measured reflections
6191 independent reflections

Refinement

Refinement on F
$R=0.024$
$w R=0.034$
$S=1.27$
4802 reflections
235 parameters
$D_{x}=1.511 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 7124
\quad reflections
$\theta=2.5-30.5^{\circ}$
$\mu=0.69 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Plate, yellow
$0.58 \times 0.40 \times 0.16 \mathrm{~mm}$

4802 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=30.5^{\circ}$
$h=-24 \rightarrow 24$
$k=-13 \rightarrow 13$
$l=-17 \rightarrow 17$
Intensity decay: none

H -atom parameters constrained
$w=1 /\left\{\left[\sigma_{\mathrm{cs}}\left(F^{2}\right)+1.03 F^{2}\right]^{1 / 2}-|F|\right\}^{2}$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.48(5) \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.39(5)$ e \AA^{-3}

Table 1
Selected bond lengths (\AA).

S1-C1	$1.658(1)$	$\mathrm{S} 1 A-\mathrm{C} 1 A$	$1.662(1)$
S2-C1	$1.719(1)$	$\mathrm{S} 2 A-\mathrm{C} 1 A$	$1.717(1)$
S2-C2	$1.815(1)$	$\mathrm{S} 2 A-\mathrm{C} 2 A$	$1.810(1)$
S3-C1	$1.719(1)$	$\mathrm{S} 3 A-\mathrm{C} 1 A$	$1.714(1)$
S3-C4	$1.812(1)$	$\mathrm{S} 3 A-\mathrm{C} 4 A$	$1.815(1)$

The H atoms were included using a riding model and were constrained to have $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}$ of their parent atom.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1997) and KRYSTAL (Hazell, 1995); program(s) used to refine structure: modified ORFLS (Busing et al., 1962) and KRYSTAL; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and KRYSTAL; software used to prepare material for publication: KRYSTAL.

AH is indebted to the Carslberg Foundation for the diffractometer and cooling device.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1452). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. \& Spagna, R. (1997). SIR97. University of Bari, Italy.
Bellito, C., Bigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Staulo, H. \& Trogu, E. F. (1994). Inorg. Chem. 33, 3005-3009.
Bucourt, A. \& Hainaut, D. (1967). Bull. Soc. Chim. Fr. pp. 4562-4567.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Guanti, G., Narisano, E. \& Riva, R. (1997). Tetrahedron Asymmetry, 13, 21752188.

Hazell, A. (1995). KRYSTAL. Aarhus University, Denmark.
Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Uneme, H., Mitsudera, H., Kamikado, T., Kono, Y., Manabe, Y. \& Numata, M. (1992). Biosci. Biotechnol. Biochem. 12, 2023-2033.

